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Abstract— The stiffening of soft tissues has been 

demonstrated to be associated with different disease processes 
such as cancer. In the last decades several devices and 
techniques have been developed to provide 2D maps of elasticity 
in order to help in diagnosis. 3D shear elasticity imaging was 
recently implemented with matrix arrays using the acoustic 
radiation force of ultrasound as shear wave source. However, 
matrix arrays require large number of channels and data to be 
processed. Row Column Arrays (RCAs) are a cheaper 
alternative to volume imaging since they require lower number 
of channels. However, at present RCAs are unable to generate 
acoustic radiation force due to their design and manufacturing 
process. To overcome the need of acoustic radiation force for 
elasticity imaging, in this work we implemented a passive 
elastography approach based on noise correlation of a complex 
elastic wave field to conduct 3D shear elasticity imaging using 
RCAs. Experiments were conducted on a tissue mimicking 
phantom demonstrate the feasibility of this approach. 
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I. INTRODUCTION  
The elasticity of soft tissues has been demonstrated to 

correlated with their state of health. Some pathological 
processes such as cancer and liver fibrosis are known to cause 
stiffening of the tissues. Therefore, the ability of map the 
elasticity has diagnostic value and provides information that 
cannot be obtained by other means. Nowadays, devices that 
map elasticity in 2D are commonplace. However, the 
diagnostic value of these images can be greatly enhanced if 
the information is provided in 3D.  

Three-dimensional ultrafast ultrasonic imaging is now 
possible thanks to the development of breakthrough 
technology like matrix [1] and row columns arrays (RCAs) 
[2],[3]. Moreover, Shear Wave Elastography relies on 
ultrafast acquisition to track the propagation of shear wave in 
the soft tissues. By determining its speed of propagation it is 
possible to image tissue’s shear elasticity (µ), since µ = ρcs2, 
where ρ and cs correspond to the tissue’s density and shear 
wave velocity, respectively. Most available SWE commercial 
systems use the acoustic radiation force of a focused 
ultrasound beam to generate shear waves and locally estimate 
cs to provide 2D shear elasticity images [4].  

Recently, 3D shear elasticity imaging was implemented 
with matrix arrays using the acoustic radiation force of 
ultrasound as shear wave source [1],[5]. The main drawback 
of matrix arrays is that they require an ultrasound system with 
a large number of channels making this an expensive 
implementation. Contrary, RCAs allow volume imaging with 
lower channel count and have been used for 3D ultrafast 
acquisitions [6]. However, despite the advancement in probe 

manufacture, currently RCAs are unable to generate shear 
waves levels of acoustic radiation force. To overcome this 
limitation, in this work we implemented a passive 
elastography approach based on noise correlation of a 
complex elastic wave field to conduct 3D shear elasticity 
imaging using RCAs. 

II. MATERIALS AND METHODS 

A. Experimental setup 
Experiments were conducted on a bilayer tissue 

mimicking phantom made of gelatin. The top and bottom 
layers of the phantom were created with 4% and 7% gelatin 
by volume, respectively. Cornstarch was added to the gelatin 
solution to create ultrasonic speckle. The diameter of the 
phantom was 12 cm, and the top and bottom layers had a 
thickness of 4 cm and 10 cm, respectively (Fig. 1). Prior to the 
RCA experimentation, the shear wave velocity of each layer 
was measured using a SWE sequence as in [7] implemented 
on a Vantage 256 system with an L7-4 linear array. Shear 
wave velocities of 2.7 m/s and 4.8 m/s were found for the top 
and bottom layer, respectively. 

In the 3D elasticity imaging experiments, a complex 
elastic wave-field dominated by shear waves was created 
inside the phantom by randomly taping the phantom’s 
accessible surface with fingers following a similar procedure 
to [8],[9]. The tapping of the phantom was started two seconds 
prior to launching the ultrasound sequence and kept 
throughout the entire acquisition. 

 
Fig. 1 Schematic representation of the experimental setup. Multiple 
finger impacts are used to create a complex elastic field within a bilayer 
tissue mimicking phantom. The particle velocity field is the acquired 
inside an imaging volume using a RCA driven by a Verasonics Vantage 
system. 



B. Ultrasonic sequence  
The z-component of the 3D particle velocity field (Vp) 

associated with the complex wavefield was acquired with 
plane wave insonifications using a Vantage 256 system and a 
6 MHz RCA (Vermon SA). The probe has 256 elements (128 
rows and 128 columns) and an acoustic footprint of 25.6 x 
25.6 mm. The ultrasound acquisition lasted 2 seconds at a 
frame rate of 200 Hz for a total of 400 frames. For computing 
Vp (x,y,z,t), cross-correlation on the phase of the IQ-data of 
consecutive frames was used. The particle velocity field along 
the x and y directions were computed independently and 
averaged for the final result shown in Fig. 2. 

C. Cross-correlation and time reversal of shear waves: the 
derivative ratio method 

To recover a local shear wave velocity estimation, a cross-
correlation approach interpreted as time reversal (TR) 
experiment was used in this work. Cross-correlation methods 
allow to reconstruct a refocusing wavefield from an 
apparently random and disorganized wavefield [10]. Let φ(r,t) 
denote any quantity obeying a lossless wave equation, for 
example, the particle velocity field Vp measured in this work.  

Then, the cross-correlation field (C) between signals acquired 
at different positions r and ro can be computed as: 

 C(r,ro,t)  =  φ(r,t) * φ(ro,-t)   ≈  φTR(r,t) (1) 

Where * denotes the convolution in time. Under the 
assumption of the field being diffuse, the time derivative of 
the cross-correlation in (1) is directly linked to the reversal 
field [10],[11]. Moreover, if the field φ has a finite bandwidth 
(as in most experiments), the correlation and its time 
derivative only differ in a constant phase factor [12] and the 
correlation field may be directly interpreted as the time 
reversal field. Thus, (1) represents a refocusing process 
around ro with the focusing time set as 0 ms. 

From the computed correlation field there are different 
independent approaches to image the shear wave velocity, for 
example, tracking the coherent shear wave as it focuses. 
Another alternative is to measure the focus size which is 
directly linked to the shear wavelength (λs) and hence to the 
shear wave velocity. Other authors have used the vibration 
amplitude at the focusing point, since for a given frequency, 
the vibration amplitude is larger in a soft tissue than in a hard 
one. A summary of these and other methods is given in [11]. 
In the current work we used the “derivative ratio” method 
which has been demonstrated to be less sensitive to the 
diffusivity hypothesis and has shown to be compatible with 
low imaging frame rates [11],[13].  

D. The derivative ratio method 
The derivative ratio method was first proposed by 

Catheline and his group in 2013 [13] and it was further refined 
by Zemzemi et al. who incorporated near field effects to the 
inversion [14]. The idea behind this method is the following: 
let φ(r,t) represents a physical magnitude obeying a wave 
equation, then, its temporal (υ = ∂φ/∂t) and spatial derivatives 
(εi = ∂φ/∂i, i = x,y,z) will obey a wave equation as well. 
Therefore, they are time reversal invariants.  Under plane 
wave decomposition the time reversal version of each quantity 
(denoted with superscripts TR) can be written as [13]  

 εiTR(r,ro,t)  =  -ki2 φTR(r,t) (2) 

 υ TR(r,ro,t)  =  -ω2 φTR(r,t) (3) 

Where ki is the i-component of the wave number and ω is 
the frequency. Consequently, the shear wave speed can be 
computed as the ratio between the time reversal version of the 
temporal and spatial derivatives at the focusing point. 
Moreover, to take advantage of the 3D information, in this 
work the shear wave velocity at point ro was computed as: 

 c!(𝐫𝐨) = 𝜔/𝑘 = ) #!"(𝐫𝐨,𝐫𝐨,'())
∑ ,$

!"(𝐫𝐨,𝐫𝐨,'())%&',),*
 (4) 

Given the fact that time reversal focusing is a matched filter, 
another advantage of this approach is that it uses the 
maximum achievable signal to noise ratio for position ro. 

So for the inversion (i.e. measuring cs(ro)) we let φ(r,t) be 
Vp (r,t). Therefore, we first compute the 3D gradient and 
temporal derivatives. Then, we computed the autocorrelation 
given in (1) at position ro for each of the derivatives. This 
corresponds to the time reversal version of each quantity as 
expressed in (2) and (3). Finally, we applied (4) to recover cs.  

III. RESULTS AND DISCUSSION 
Figure 3 shows the volumetric B-mode image of the 

phantom, where the boundary between both layers is visible 
for z  ~ 28 mm.  

 
Fig. 2 Volumetric particle velocity field Vp used for shear wave velocity 
estimation. The left panel shows three different planes corresponding to 
x = 0 mm, y = 0 mm and z = 25 mm acquired at t = 0 s. The right panel 
shows a 0.5 s time window of the temporal trace of Vp for different points 
within the imaging volume. Each point is highlighted by white dots on 
the left panel.  
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The 3D shear wave velocity image obtained using the 
passive elastography approach introduced in this work is 
shown in Fig. 4. In the volumetric shear wave velocity image 
both layers are clearly visible. The location of the sharp 
boundary between both layers is observable at z ~ 30 mm in 
fair agreement with the B-mode image, illustrating the spatial 
resolution of the method [14].  

The values of cs for the top and bottom layer were found 
to be 1.5 ± 0.003 m/s and 2.6 ± 0.008 m/s (mean value ± 
standard deviation), respectively. These values are lower than 
the ones measured during the elastic characterization of the 
phantom with values of 2.7 m/s and 4.8 m/s, respectively. This 
underestimation may be attributed to guidance effects, since 
the central frequency of the wave field was ~20 Hz (Fig. 2), 
thus resulting in shear wavelengths comparable to the 
thickness of each layer, i.e. λs ~ 13 cm and 24 cm for 
thicknesses of 4 cm and 10 cm, respectively.  However, 
despite this underestimation a shear wave velocity contrast of 
0.58 is found between both layers in good agreement with 0.56 
found for our previous characterization.  

In this work a complex wave field was generated using 
finger impacts over the phantom’s accessible surface. The 
amplitude of the particle velocity field (~ 8 mm/s in Fig. 2) is 
larger than those in radiation-force methods Thus, the wave 
field was easily detected with the RCA.  

The main drawback of this approach is that due to limited 
acquisition time and available surface for tapping the 
generated wave filed was not completely diffuse. Although 
diffusivity is strictly not needed for the derivative ratio 
method, this condition may enhance the final elasticity image 
[11],[13]. Despite these constraints, the passive elastography 
methods proposed in this work (Fig. 4) showed show a good 
agreement in differentiating the two layers with the B-mode 
image (Fig. 3). Future studies should focus on quantifying the 
impact of diffusivity in the final shear elasticity image and the 
use of more complex phantoms. 

IV. CONCLUSIONS 
The result of this proof of concept demonstrates the 

potential of RCAs combined with a passive elastography 
approach for 3D shear wave velocity imaging. Future works 
should focus on explaining the observed underestimation and 
imaging smaller inclusions. 
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Fig. 4 Three dimensional shear wave velocity image. Both layers are clearly 
visible with mean shear wave velocities of 1.5 m/s and 2.6 m/s for the top 
and bottom layer respectively. 
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